
Wireless Testbench™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wireless Testbench™ User's Guide
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)
September 2022 Online only Revised for Version 1.1 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Radio Management
1

Install Support Package for NI USRP Radios . 1-2

Connect and Set Up NI USRP Radios . 1-3
Start Radio Setup Wizard . 1-3

Reference Information for NI USRP Radio Setup Wizard 1-4
SD Card Image Creation . 1-4
Radio Device Connection . 1-4
Network Configuration . 1-4
Data Transfer Optimization . 1-4

Baseband Sample Rate in NI USRP Radios . 1-6
Supported Master Clock Rates . 1-6
Set Baseband Sample Rate . 1-6
Farrow Rate Converter . 1-7
Resampling Transmit Waveform . 1-7

Transmit and Capture
2

Capture from Frequency Band with Multiple Antennas 2-2

Transmit App-Generated Wireless Waveform Using Radio Transmitters
. 2-6

Spectrum Monitoring
3

OFDM WiFi Scanner Using SDR Preamble Detection 3-2

Triggered WLAN Waveform Capture Using Preamble Detection 3-14

Simulate Triggered Capture Using Preamble Detection 3-18

iii

Contents

Radio Management

1

Install Support Package for NI USRP Radios
The Wireless Testbench™ Support Package for NI USRP Radios enables you to connect and set up
your NI USRP radio for use in Wireless Testbench.

1 On the MATLAB® Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the Add-On Explorer window, browse or search for the Wireless Testbench Support Package
for NI USRP Radios.

3 Select the support package and then click Install.

When the support package installation is complete, you can proceed directly to setting up the radio
for use in Wireless Testbench by clicking the setup button in the Add-On Manager window. For
more information, see “Connect and Set Up NI USRP Radios” on page 1-3.

See Also

More About
• “Connect and Set Up NI USRP Radios” on page 1-3
• “Supported Radio Devices”

1 Radio Management

1-2

Connect and Set Up NI USRP Radios
Before you can start interacting with RF signals using Wireless Testbench features and an NI USRP
radio, you must set up your radio using the Radio Setup wizard.

The Radio Setup wizard enables you to perform these tasks.

• Set up your radio for use in Wireless Testbench.
• Save a radio setup configuration under a name. You use this name later when configuring your

radio for use with a specific Wireless Testbench reference application.
• List all saved radio setup configurations.
• Update, delete or re-validate saved radio setup configurations.

Start Radio Setup Wizard
After installing the Wireless Testbench Support Package for NI USRP Radios, you can go directly to
the Radio Setup wizard. Alternatively, you can start the Radio Setup wizard by following these steps.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.
2 In the Add-On Manager window, find the Wireless Testbench Support Package for NI USRP

Radios, then click the setup button .

The Radio Setup wizard leads you through several steps. If you have to close the Radio Setup wizard
at any time, you can start the wizard again from the Add-On Manager window. If you need more
information about how to perform the wizard steps, see “Reference Information for NI USRP Radio
Setup Wizard” on page 1-4.

Once your radio setup is complete, you can start exploring Wireless Testbench examples.

Note Saved radio setup configurations are persistent across MATLAB sessions. You only need to run
the Radio Setup wizard again if you want to set up a new radio or you want to manage saved radio
setup configurations.

See Also

More About
• “Install Support Package for NI USRP Radios” on page 1-2
• “Reference Information for NI USRP Radio Setup Wizard” on page 1-4
• “Supported Radio Devices”

 Connect and Set Up NI USRP Radios

1-3

Reference Information for NI USRP Radio Setup Wizard
The Radio Setup wizard of the Wireless Testbench Support Package for NI USRP Radios leads you
through several steps to connect and set up your radio for use in Wireless Testbench. Use this section
as a reference to get more information about how to perform these steps. For more information about
how to start the wizard, see “Start Radio Setup Wizard” on page 1-3.

SD Card Image Creation
For NI USRP radios, the host computer must have at least one microSD card reader and one writable
microSD card. The radio takes a microSD card, and if the host has a standard SD card reader you can
use an adapter. The SD card must have at least 14.8 GB of storage and must be formatted as a single
14.8 GB (or greater) partition. If the host computer does not have an integrated card reader, use an
external USB SD card reader. If you have already set up an SD card with the Linux system file image,
select the I have SD Card Setup and Connected to Hardware option on the Radio Setup wizard
and click Next to proceed with the hardware setup.

Radio Device Connection
The Ethernet connection is often referred to as a network connection. You can use an integrated
network interface card (NIC) with a Gigabit Ethernet cable. This connection is necessary for
transmitting data, such as the field programmable gate array (FPGA) image or firmware image, from
the computer to the radio. It is also necessary for sending and receiving signals to and from the radio.
For NI USRP radios, the host computer must contain at least one dedicated 1 or 10 Gigabit network
interface card (NIC) for connecting to the radio. You can use the small form-factor pluggable (SFP)
network interface with a Gigabit Ethernet cable.

Network Configuration
The network configuration of the host IP address is persistent on Windows® (it is in effect even after
you reboot the machine). However, on Linux® systems, unless you make the changes in your network
connection persistent, a system reboot resets the network connection changes and loses the host-to-
radio connection.

To retain the host-to-radio connection after a computer reboot on Linux systems, make the network
connection changes to the host computer persistent by editing the /etc/network/interfaces file.

1 Edit /etc/network/interfaces to define settings for eth1.
2 Use an IP address on the same subnet as your radio (that is, with three initial octets that match

those of your radio) and a unique value for the fourth octet. For example:

auto eth1
iface eth1 inet static
 address 192.168.30.1
 netmask 255.255.255.0

Data Transfer Optimization
To optimize the transfer speed between the host computer and the radio, you must update the
FastSendDatagramThreshold registry key on Windows or the wmem and rmem network buffer sizes
on Linux systems. To automatically update your operating system with this setting, click Press here

1 Radio Management

1-4

to set in the Validate step of the Radio Setup wizard. If you encounter issues during this update,
follow these steps to manually update your operating system.

Windows

1 Locate the FastSendDatagramThreshold.reg file at UHD_INSTALL/win64 path by running these
commands.

>> uhd_install_location = getUHDInstallLocation('uhdbinary.instrset')
>> cd(fullfile(uhd_install_location,'win64'))

2 Double click and run the FastSendDatagramThreshold.reg file.
3 Restart your machine.

Linux

Run these commands in a terminal.

`echo "net.core.rmem_max=2500000" | sudo tee -a /etc/sysctl.conf`
`echo "net.core.wmem_max=2500000" | sudo tee -a /etc/sysctl.conf`
`sudo sysctl -p`

See Also

More About
• “Connect and Set Up NI USRP Radios” on page 1-3

 Reference Information for NI USRP Radio Setup Wizard

1-5

Baseband Sample Rate in NI USRP Radios

In this section...
“Supported Master Clock Rates” on page 1-6
“Set Baseband Sample Rate” on page 1-6
“Farrow Rate Converter” on page 1-7
“Resampling Transmit Waveform” on page 1-7

Each Wireless Testbench reference application object enables you to set the baseband sample rate of
the radio by using the SampleRate object property. The object automatically selects the master clock
rate on the radio hardware based on the specified sample rate. If necessary, to achieve the specified
sample rate, the radio uses a Farrow rate converter.

Supported Master Clock Rates
The analog-to-digital converter (ADC) and digital-to-analog converter (DAC) in USRP radios run at the
full master clock rate, which is hardware-dependent. This table shows the master clocks rates
available on supported NI USRP radios.

Radio Device Master Clock Rate
USRP N310 • 122.88 MHz

• 125.00 MHz
• 153.60 MHz

USRP N320 • 200.00 MHz
• 245.76 MHz
• 250.00 MHz

USRP N321 • 200.00 MHz
• 245.76 MHz
• 250.00 MHz

USRP X310 • 184.32 MHz
• 200.00 MHz

Set Baseband Sample Rate
The object automatically selects the master clock rate on the radio hardware based on the
SampleRate property value. If necessary, to achieve the specified sample rate, the radio uses a
Farrow rate converter along with integer interpolation for transmit signals or integer decimation for
capture signals.

To bypass the Farrow filter, set the SampleRate property to a master clock rate value or to a value
such that MCR/SampleRate is a supported decimation or interpolation factor, where MCR is the
master clock rate that the object selects.

1 Radio Management

1-6

Radio Supported Decimation or Interpolation
Factor

USRP N310

USRP N320

USRP N321

1
2
3
Even integer in the range from 4 to 256
Multiple of 4 in the range from 256 to 512
Multiple of 8 in the range from 512 to 1016

USRP X310 Integer in the range from 1 to 128
Even integer in the range from 128 to 256
Multiple of 4 in the range from 256 to 512
Multiple of 8 in the range from 512 to 1016

Farrow Rate Converter
If MCR/SampleRate is not a supported decimation or interpolation factor, the signal passes through
the Farrow rate converter. Because of hardware limitations, the Farrow rate converter can only
convert sample rates that are less than MCR/2.

Resampling Transmit Waveform
If the basebandTransceiver, basebandTransmitter, or preambleDetector object uses a
Farrow rate converter to achieve the sample rate specified by the SampleRate property, the object
resamples the transmit waveform that you specify when calling the transmit object function. The
resulting waveform has an increased number of data samples.

See Also
Objects
basebandReceiver | basebandTransceiver | basebandTransmitter | preambleDetector

More About
• “Connect and Set Up NI USRP Radios” on page 1-3
• “Supported Radio Devices”

 Baseband Sample Rate in NI USRP Radios

1-7

Transmit and Capture

2

Capture from Frequency Band with Multiple Antennas

This example shows how to configure a software-defined radio (SDR) as a baseband receiver to
capture data from a specified frequency band using multiple antennas. The example also plots the
frequency spectrum of the captured data.

Introduction

This example shows how to use the basebandReceiver object to capture a wide frequency band by
using two radio antennas with different center frequencies. Because each antenna captures at least
half of the frequency band, you can capture a wider frequency band than using a single antenna. To
view the whole frequency band, the example upsamples and shifts the captured data.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios” on page 1-3.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Specify Frequency Band

Specify the start and the end of the frequency band. By default, this example captures the 470–694
MHz frequency band, typically allocated to TV broadcasting channels 21–48.

frequencyBand.Start = ;

frequencyBand.End = ;
frequencyBand.Width = frequencyBand.End - frequencyBand.Start;
frequencyBand.CenterFrequency = frequencyBand.Start + frequencyBand.Width/2;

Configure Baseband Receiver

Create a baseband receiver object with the specified radio. Because the object requires exclusive
access to radio hardware resources, clear any object associated with the specified radio.

clear bbrx
bbrx = basebandReceiver(radio);

To capture the full width of the frequency band with two antennas:

• Set the SampleRate property to a value that is greater than or equal to half the width of the
frequency band.

• Set the CenterFrequency property to the values that correspond to the middle of each half of
the frequency band.

2 Transmit and Capture

2-2

• Set the Antennas property to values that correspond to two antennas that can use different
center frequencies on the SDR.

To use the maximum sample rate available for your radio, call the hMaxSampleRate helper function.
Alternatively, you can set a custom sample rate.

maxSampleRate = hMaxSampleRate(radio);

bbrx.SampleRate = ;
bbrx.CenterFrequency = [frequencyBand.CenterFrequency - frequencyBand.Width/4,...
 frequencyBand.CenterFrequency + frequencyBand.Width/4];

To update the dropdown menu with antennas that can use different center frequencies, call the
hIndependentFrequencyCaptureAntennas helper function. Then select the antennas to use with
this example.

[firstAntennaSelection, secondAntennaSelection] = hIndependentFrequencyCaptureAntennas(radio);

bbrx.Antennas = [,];

Set the RadioGain property according to the local signal strength.

bbrx.RadioGain = ;

Beacuse the resampling operation (after capture) requires double precision input data, configure the
baseband receiver to return the captured data in double precision.

bbrx.CaptureDataType = "double";

Capture IQ Data

To capture IQ data from the two halves of the specified frequency band, call the capture function on
the baseband receiver object. Specify the length of the capture.

captureLength = milliseconds();
data = capture(bbrx,captureLength);

Resample and Shift Captured Data

Resample the captured data to the full bandwidth of the frequency band.

resampledData = resample(data,length(bbrx.Antennas),1);

Shift the upsampled data from each antenna to the matching half of the frequency band by using the
center frequency difference between the corresponding antenna and the frequency band.

shiftedData = zeros(size(resampledData));
for antenna = 1 : length(bbrx.Antennas)
 frequencyOffsetGen = dsp.SineWave(...
 Frequency=bbrx.CenterFrequency(antenna) - frequencyBand.CenterFrequency,...
 SampleRate=bbrx.SampleRate * length(bbrx.Antennas),...
 SamplesPerFrame=length(resampledData),...
 ComplexOutput=true);
 shiftedData(:,antenna) = resampledData(:,antenna).*frequencyOffsetGen();
end

 Capture from Frequency Band with Multiple Antennas

2-3

Plot Spectrum of Frequency Band

Create a spectrumAnalyzer object. To speed up the execution time of this example upon
subsequent runs, reuse the spectrum analyzer object. Set the sample rate of the spectrum analyzer
object to the resampled rate of the captured data. Plot the spectrum of the resampled data.

if ~exist("spectrumScope","var")
 spectrumScope = spectrumAnalyzer;
end
spectrumScope.SampleRate = bbrx.SampleRate*length(bbrx.Antennas);
spectrumScope.ChannelNames = bbrx.Antennas;
spectrumScope.FrequencyOffset = [frequencyBand.CenterFrequency,frequencyBand.CenterFrequency];
spectrumScope.SpectrumUnits = "dBFS";
spectrumScope.FullScaleSource = "Property";
spectrumScope.FullScale = 1;
spectrumScope(shiftedData);
spectrumScope.show;
release(spectrumScope);

To call the capture function again and to update the spectrum analyzer by rerunning the current
section, click Capture and plot frequency spectrum.

2 Transmit and Capture

2-4

See Also
Functions
radioConfigurations

Objects
basebandReceiver

More About
• “Capture from Frequency Band”
• “Connect and Set Up NI USRP Radios” on page 1-3
• “Supported Radio Devices”

 Capture from Frequency Band with Multiple Antennas

2-5

Transmit App-Generated Wireless Waveform Using Radio
Transmitters

This example shows how to use the NI™ USRP™ N310, USRP N320, USRP N321, and USRP X310
radio transmitters available in the Wireless Waveform Generator app to transmit an app-generated
waveform over the air (requires Wireless Testbench™). These radio transmitters enable you to
transmit up to 2 GB of contiguous data over the air at full radio device rate.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing, and
transmitting waveforms. Using the USRP N310, USRP N320, USRP N321, and USRP X310 radio
transmitters available in the app, you can transmit your generated waveform repeatedly over the air.
You can also export the waveform generation and transmission parameters to a runnable MATLAB®
script. This example shows how to configure these radio transmitters.

Although this example shows how to transmit an OFDM waveform, the same process applies for all
waveform types that you can generate with the app.

Set Up for Radio Transmission

To use the radio transmitters in the app, you need to install the Wireless Testbench Support Package
for NI USRP Radios add-on and set up your radio outside the app. For more information, see
“Connect and Set Up NI USRP Radios” on page 1-3.

Generate Waveform for Transmission

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the leftmost pane of
the app, adjust any configuration parameters for the selected waveform. Then generate the
configuration by clicking Generate in the app toolstrip.

2 Transmit and Capture

2-6

Configure Radio Transmitter

Select the Transmitter tab from the app toolstrip. In the transmitter gallery, select the USRP N310,
USRP N320, USRP N321, or USRP X310 radio transmitter.

In the leftmost pane of the app, select the name of a radio setup configuration that you saved using
the Radio Setup wizard. For more information, see “Connect and Set Up NI USRP Radios” on page 1-
3.

Set the center frequency, gain, and antennas configuration parameters. The app automatically sets
the waveform sample rate based on the waveform that you generated earlier. The radio transmitter
uses onboard data buffering to ensure contiguous data transmission at up to the full hardware sample
rate. If necessary, to achieve the specified sample rate, the radio uses a Farrow rate converter. Use
this list as a reference when setting the sample rate:

• USRP N310 — 120,945 Hz to 76.8 MHz, or one of: 122.88 MHz, 125 MHz, or 153.6 MHz
• USRP N320 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP N321 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP X310 — 181,418 Hz to 100 MHz, or one of: 184.32 MHz or 200 MHz

 Transmit App-Generated Wireless Waveform Using Radio Transmitters

2-7

Transmit Waveform

To transmit the waveform continuously, click Transmit. To end the continuous transmission, click
Stop transmission. To export the waveform generation and transmission parameters to a runnable
MATLAB script, click Export MATLAB script.

See Also
Functions
radioConfigurations

More About
• “Supported Radio Devices”

2 Transmit and Capture

2-8

Spectrum Monitoring

3

OFDM WiFi Scanner Using SDR Preamble Detection

This example shows how to retrieve information about WiFi networks using a software-defined radio
(SDR) and preamble detection. The example scans over the 2.4 GHz and 5 GHz channels and uses an
SDR preamble detector to detect and capture orthogonal frequency-division multiplexing (OFDM)
packets from the air. The example then decodes the OFDM packets to determine which packets are
access point (AP) beacons. The AP beacon information includes the service set identifier (SSID),
media access control (MAC) address (also known as the basic SSID, or BSSID), AP channel
bandwidth, and 802.11 standard used by the AP.

Introduction

This example scans through a set of WiFi channels to detect AP beacons that are transmitted on 20
MHz subchannels. The scanning procedure uses a preamble detector on an NI™ USRP™ radio.

The scanning procedure comprises of these steps.

• Configure the preambleDetector object with a preamble that is generated from the legacy long
training field (L-LTF).

• Set the frequency band and channels for the preamble detector to scan.
• Scan each specified channel and with each successful detection of an OFDM packet, capture a

waveform for a set duration.
• Process the waveform in MATLAB® by searching for beacon frames in the captured waveform and

extracting relevant information from each successfully decoded beacon frame.
• Display key information about the detected APs.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios” on page 1-3.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Configure Preamble Detector

Create a preamble detector object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

clear pd
pd = preambleDetector(radio);

To update the dropdown menu with the antennas available for capture on your radio, call the
hCaptureAntennas helper function. Then select the antenna to use with this example.

captureAntennaSelection = hCaptureAntennas(radio);

pd.Antennas = ;

3 Spectrum Monitoring

3-2

To increase the capture sample rate to 40 MHz, specify an oversampling factor of 2.

osf = ;
pd.SampleRate = 20e6*osf;
pd.CaptureDataType = "double";
pd.ThresholdMethod = "adaptive";

Configure Preamble For Radio

The 802.11 standard requires that all WiFi APs must transmit OFDM beacons using non-high
throughput (non-HT) packets over a 20 MHz bandwidth. Therefore, generate a 20 MHz L-LTF
waveform and use one long training symbol from the generated waveform as the preamble to detect
WLAN OFDM packets.

cbw = "CBW20";
cfg = wlanNonHTConfig(ChannelBandwidth=cbw);
lltf = wlanLLTF(cfg,OversamplingFactor=osf);

Extract the first long training symbol from the L-LTF waveform.

cyclicPrefixLength = 1.6e-6*pd.SampleRate;
trainingSymbolLength = 3.2e-6*pd.SampleRate;
preamble = lltf(cyclicPrefixLength+1:cyclicPrefixLength+trainingSymbolLength);

Because the preamble detector requires the preamble to be between –1 and 1, normalize and set the
preamble.

preamble = preamble/sqrt(sum(abs(preamble).^2));
pd.Preamble = preamble;

To capture the entire first non-HT packet, you must set the trigger offset to a negative value. Since
you created a matched filter based on the long training symbol in the L-LTF waveform, the offset is at
least one legacy short training field (L-STF), one L-LTF cyclic prefix, and one long training symbol.

lstfLength = 8e-6*pd.SampleRate;
pd.TriggerOffset = -(lstfLength + cyclicPrefixLength + trainingSymbolLength + 5);

Tune Preamble Detector

Configure the adaptive threshold gain, the adaptive threshold offset, and the radio gain values of the
preamble detector for the local environment. Configuring these values requires manual tuning by
exploring the trigger points provided by the plotThreshold function. For more information on
tuning these values, see “Triggered Capture Using Preamble Detection”.

For tuning the preamble detector, specify a frequency band and channel with a known OFDM packet.

These are the valid channel numbers.

• 1–14 for the 2.4 GHz band.
• 1–200 for the 5 GHz band. However, the valid 20 MHz control channels for APs using 5 GHz are

32, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149,
153, 157, 161, 165, 169, 173, 177.

band = ;

channel = ;

 OFDM WiFi Scanner Using SDR Preamble Detection

3-3

pd.CenterFrequency = wlanChannelFrequency(channel,band);

Adjust these values for tuning the preamble detector.

pd.AdaptiveThresholdGain = ;

pd.AdaptiveThresholdOffset = ;

pd.RadioGain = ;

Plot the filter output power, adaptive threshold, and trigger points of the reconfigured preamble
detector. The generated figure contains two trigger points for each OFDM packet. Each trigger point
corresponds to a long training symbol.

When you generate a plotThreshold figure, if you do not have at least two trigger points for each
OFDM packet, readjust the adaptive threshold gain, the adaptive threshold offset, and the radio gain
until there are at least two trigger points per OFDM packet.

captureDuration = milliseconds(120);
plotThreshold(pd,captureDuration);

Inspect the trigger points by zooming in along the x-axis of the plot. For example, this figure shows a
zoomed-in view of an OFDM packet with the trigger points on the correlation peaks.

3 Spectrum Monitoring

3-4

Scan WiFi Channels

Specify Scanning Region

Specify the frequency band and the channels for the SDR to scan.

band = ;

channels = ;

Generate the center frequencies associated with the selected channels and band values.

centerFrequencies = wlanChannelFrequency(channels,band);

Receiver Design

This diagram shows an overview of the receiver for scanning the selected channels and frequency
band.

 OFDM WiFi Scanner Using SDR Preamble Detection

3-5

These steps provide further information on the diagram.

1 Set the center frequency of the preamble detector, then initialize the detection and capture of a
waveform for a set duration.

2 Check if the preamble detector detects an OFDM packet.
3 Determine and apply frequency and timing corrections on the waveform, then attempt to recover

the legacy signal (L-SIG) field bits.
4 Check that the packet format is non-HT.
5 From the recovered L-SIG, extract the modulation and coding scheme (MCS) and the length of

the PLCP service data unit (PSDU). Then recover the non-HT data and subsequently decode the
MAC protocol data unit (MPDU).

6 Using the recovered MAC frame configuration, check if the non-HT packet is a beacon.
7 Recover the SSID, BSSID, vendor of the AP, SNR, primary 20 MHz channel, current channel

center frequency index, supported channel width, frequency band, and wireless standard used by
the AP.

8 Check if the waveform contains another packet that you can decode.

Initialize Variables

When you call the capture function to detect and capture a signal, you must specify the length of
the capture and the signal detection timeout. Since beacons transmit every 100 ms, set
captureLength to milliseconds(100) and timeout to milliseconds(200).

captureLength = ;

timeout = ;

Create a structure (APs) for storing this information for each successfully decoded beacon.

• SSID
• BSSID
• Vendor of AP
• Signal-to-noise ratio (SNR)
• Primary 20 MHz channel
• Current channel center frequency
• Channel width

3 Spectrum Monitoring

3-6

• Frequency band
• Operating mode supported by the AP
• MAC frame configuration
• Waveform in which the beacon exists
• Index value at which the non-HT beacon packet begins in the captured waveform

APs = struct(...
 "SSID",[],"BSSID",[],"Vendor",[],"SNR_dB",[],"Beacon_Channel",[], ...
 "Operating_Channel",[],"Channel_Width_MHz",[],"Band",[],"Mode",[], ...
 "MAC_Config",wlanMACFrameConfig,"Waveform",[],"Offset",[]);

To determine the hardware manufacturer of the AP, select the retrieveVendorInfo box. Selecting
the retrieveVendorInfo box downloads the organizationally unique identifier (OUI) CSV file from
the IEEE® Registration Authority website for vendor AP identification.

retrieveVendorInfo = ;
counter = 1;
ind = wlanFieldIndices(cfg);

% Begin scanning and decoding for specified channels.
for i = 1:length(centerFrequencies)

 pd.CenterFrequency = centerFrequencies(i);

 fprintf("Scanning channel %d on band %.1f.\n",channels(i),band);
 [capturedData, ~, ~, status] = capture(pd, captureLength, timeout);

 if ~status
 % If no non-HT packet is decoded, go to next channel.
 fprintf("No non-HT packet detected on channel %d in band %.1f.\n",channels(i),band);
 continue;
 else
 fprintf("Non-HT packet detected on channel %d in band %.1f.\n",channels(i),band)
 end
 % Resample the captured data to 20 MHz for beacon processing.
 capturedData = resample(capturedData,1,osf);
 searchOffset = 0;
 while searchOffset<length(capturedData)

 % recoverPreamble detects a packet and performs analysis of the non-HT preamble.
 [preambleStatus,res] = recoverPreamble(capturedData,cbw,searchOffset);

 if matches(preambleStatus,"No packet detected")
 break;
 end

 % Retrieve synchronized data and scale it with LSTF power as done
 % in the recoverPreamble function.
 syncData = capturedData(res.PacketOffset+1:end)./sqrt(res.LSTFPower);
 syncData = frequencyOffset(syncData,pd.SampleRate/osf,-res.CFOEstimate);

 % Need only 4 OFDM symbols (LSIG + 3 more symbols) following LLTF
 % for format detection
 fmtDetect = syncData(ind.LSIG(1):(ind.LSIG(2)+4e-6*pd.SampleRate/osf*3));

 OFDM WiFi Scanner Using SDR Preamble Detection

3-7

 [LSIGBits, failcheck] = wlanLSIGRecover(fmtDetect(1:4e-6*pd.SampleRate/osf*1), ...
 res.ChanEstNonHT,res.NoiseEstNonHT,cbw);

 if ~failcheck
 format = wlanFormatDetect(fmtDetect,res.ChanEstNonHT,res.NoiseEstNonHT,cbw);
 if matches(format,"Non-HT")

 % Extract MCS from first 3 bits of L-SIG.
 rate = double(bit2int(LSIGBits(1:3),3));
 if rate <= 1
 cfg.MCS = rate + 6;
 else
 cfg.MCS = mod(rate,6);
 end

 % Determine PSDU length from L-SIG.
 cfg.PSDULength = double(bit2int(LSIGBits(6:17),12,0));
 ind.NonHTData = wlanFieldIndices(cfg,"NonHT-Data");

 if double(ind.NonHTData(2)-ind.NonHTData(1))> ...
 length(syncData(ind.NonHTData(1):end))
 % Exit while loop as full packet not captured.
 break;
 end

 nonHTData = syncData(ind.NonHTData(1):ind.NonHTData(2));
 bitsData = wlanNonHTDataRecover(nonHTData,res.ChanEstNonHT, ...
 res.NoiseEstNonHT,cfg);
 [cfgMAC, ~, decodeStatus] = wlanMPDUDecode(bitsData,cfg, ...
 SuppressWarnings=true);

 % Extract information about channel from the beacon.
 if ~decodeStatus && matches(cfgMAC.FrameType,"Beacon")
 fprintf("Beacon detected on channel %d in band %.1f.\n",channels(i),band);

 % Populate the table with information about the beacon.
 if isempty(cfgMAC.ManagementConfig.SSID)
 APs(counter).SSID = "Hidden";
 else
 APs(counter).SSID = string(cfgMAC.ManagementConfig.SSID);
 end

 APs(counter).BSSID = string(cfgMAC.Address3);
 if retrieveVendorInfo
 APs(counter).Vendor = determineVendor(cfgMAC.Address3);
 else
 APs(counter).Vendor = "Skipped"; %#ok<UNRCH>
 end
 [APs(counter).Mode, APs(counter).Channel_Width_MHz, operatingChannel] = ...
 determineMode(cfgMAC.ManagementConfig.InformationElements);

 if isempty(operatingChannel)
 % Default to scanning channel if operating channel
 % cannot be determined.
 operatingChannel = channels(i);
 end

 APs(counter).Beacon_Channel = channels(i);

3 Spectrum Monitoring

3-8

 APs(counter).Operating_Channel = operatingChannel;
 APs(counter).SNR_dB = res.LLTFSNR;
 APs(counter).MAC_Config = cfgMAC;
 APs(counter).Offset = res.PacketOffset;
 APs(counter).Waveform = capturedData;
 counter = counter + 1;
 end
 % Shift packet search offset for next iteration of while loop.
 searchOffset = res.PacketOffset + double(ind.NonHTData(2));
 else
 % Packet is NOT non-HT; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*pd.SampleRate/osf*10;
 end
 else
 % L-SIG recovery failed; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*pd.SampleRate/osf*10;
 end
 end
end

Scanning channel 52 on band 5.0.

Non-HT packet detected on channel 52 in band 5.0.

Beacon detected on channel 52 in band 5.0.

Downloading oui.csv from IEEE Registration Authority...

Scanning channel 56 on band 5.0.

No non-HT packet detected on channel 56 in band 5.0.

Scanning channel 157 on band 5.0.

No non-HT packet detected on channel 157 in band 5.0.

Convert the APs structure to a table and display the information specified in step 7 on page 3-6 by
using the local function generateBeaconTable.

detectedBeaconsInfo = generateBeaconTable(APs,band)

detectedBeaconsInfo=1×9 table
 SSID BSSID Vendor SNR (dB) Primary 20 MHz Channel Current Channel Center Frequency Index Channel Width (MHz) Band Mode
 _________ ______________ _______________________ ________ ______________________ ______________________________________ ___________________ ____ __________

 "WLAN_5G" "04D4C451C584" "ASUSTek COMPUTER INC." 18.796 52 58 "80" 5 "802.11ax"

Further Exploration

• The detectedBeaconsInfo table shows only key information about the APs. To get further
information about the beacons, such as data rates supported by the AP, explore the MAC frame
configuration in the APs structure.

• If you have access to a configurable AP, change the channel width of your AP and rerun the
example to confirm the channel width.

 OFDM WiFi Scanner Using SDR Preamble Detection

3-9

Local Functions

These functions assist in processing the incoming beacons.

function vendor = determineVendor(mac)
% DETERMINEVENDOR returns the vendor name of the AP by extracting the
% organizationally unique identifier (OUI) from the specified MAC address.

persistent ouis

vendor = strings(0);
try
 if isempty(ouis)
 if ~exist("oui.csv","file")
 disp("Downloading oui.csv from IEEE Registration Authority...")
 % Increase websave timeout if necessary
 options = weboptions("Timeout",5);
 websave("oui.csv","http://standards-oui.ieee.org/oui/oui.csv",options);
 end
 ouis = readtable("oui.csv",VariableNamingRule="preserve");
 end

 % Extract OUI from MAC Address.
 oui = mac(1:6);

 % Extract vendors name based on OUI.
 vendor = string(cell2mat(ouis.("Organization Name")(matches(ouis.Assignment,oui))));

catch ME
 % Rethrow caught error as warning.
 warning(ME.message+"\nTo skip the determineVendor function call, set retrieveVendorInfo to false.",[]);
end

if isempty(vendor)
 vendor = "Unknown";
end

end

function [mode,bw,operatingChannel] = determineMode(informationElements)
% DETERMINEMODE determines the 802.11 standard that the AP uses.
% The function checks for the presence of HT, VHT, and HE capability
% elements and determines the 802.11 standard that the AP uses. The element
% IDs are defined in IEEE Std 802.11-2020 and IEEE Std 802.11ax-2021.

elementIDs = cell2mat(informationElements(:,1));
IDs = elementIDs(:,1);

if any(IDs==255)
 if any(elementIDs(IDs==255,2)==35)
 % HE Packet Format
 mode = "802.11ax";
 else
 mode = "Unknown";
 end
 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};

3 Spectrum Monitoring

3-10

 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==191)
 % VHT Packet Format
 mode = "802.11ac";
 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==45)
 % HT Packet Format
 mode = "802.11n";
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement);
else
 % Non-HT Packet Format
 % Exclude b as only DSSS is supported
 mode ="802.11a/g/j/p";
 bw = "Unknown";
 operatingChannel = [];
end

end

function [bw,operatingChannel] = determineChannelWidth(htElement,varargin)
% DETERMINECHANNELWIDTH returns the bandwidth of the channel from the
% beacons HT/VHT operation information elements as defined in IEEE Std 802.11-2020
% Section 9.4.2.56 and Section 9.4.2.158.

msbFirst = false;

% IEEE Std 802.11-2020 Figure 9-382 and Table 9-190 define each bit in
% htOperationInfoBits
% Convert to bits to get STA channel width value in 3rd bit.
htOperationInfoBits = int2bit(htElement(2),5*8,msbFirst);
operatingChannel = 0;

if nargin == 2
 % IEEE Std 802.11-2020 Figure 9-163 and Table 9-274 define each octet
 % in vhtElement
 vhtElement = varargin{1};

 % VHT Operation Channel Width Field
 CW = vhtElement(1);
 % Channel Center Frequency Segment 0
 CCFS0 = vhtElement(2);
 % Channel Center Frequency Segment 1
 CCFS1 = vhtElement(3);

 % IEEE Std 802.11-2020 Table 11-23 defines the logic below
 if htOperationInfoBits(3) == 0
 bw = "20";
 operatingChannel = CCFS0;
 elseif CW == 0
 % HT Operation Channel Width Field is 1
 bw = "40";
 operatingChannel = CCFS0;
 elseif CCFS1 == 0
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1

 OFDM WiFi Scanner Using SDR Preamble Detection

3-11

 bw = "80";
 operatingChannel = CCFS0;
 elseif abs(CCFS1 - CCFS0) == 8
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0
 bw = "160";
 operatingChannel = CCFS1;
 else
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0 and
 % |CCFS1 - CCFS0| is greater than 16
 bw = "80+80";
 end
end

if operatingChannel == 0
 if htOperationInfoBits(3) == 1
 bw = "40";
 secondaryChannelOffset = bit2int(htOperationInfoBits(1:2),2,false);
 if secondaryChannelOffset == 1
 % Secondary Channel is above the primary channel.
 operatingChannel = htElement(1) + 2;
 elseif secondaryChannelOffset == 3
 % Secondary Channel is below the primary channel.
 operatingChannel = htElement(1) - 2;
 else
 warning("Could not determine operating channel.")
 end

 else
 bw = "20";
 operatingChannel = htElement(1);
 end
end

end

function tbl = generateBeaconTable(APs,band)
% GENERATEBEACONTABLE converts the access point structure to a table and
% cleans up the variable names.

tbl = struct2table(APs,"AsArray",true);
tbl.Band = repmat(band,length(tbl.SSID),1);
tbl = renamevars(tbl,["SNR_dB","Beacon_Channel","Operating_Channel","Channel_Width_MHz"], ...
 ["SNR (dB)","Primary 20 MHz Channel","Current Channel Center Frequency Index", ...
 "Channel Width (MHz)"]);
tbl = tbl(:,1:9);

end

See Also
Functions
radioConfigurations

3 Spectrum Monitoring

3-12

Objects
preambleDetector

More About
• “Triggered WLAN Waveform Capture Using Preamble Detection” on page 3-14
• “Connect and Set Up NI USRP Radios” on page 1-3
• “Supported Radio Devices”

 OFDM WiFi Scanner Using SDR Preamble Detection

3-13

Triggered WLAN Waveform Capture Using Preamble Detection

This example shows how to use a software-defined-radio (SDR) to capture a WLAN waveform from
the air by detecting the legacy long training field (L-LTF).

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios” on page 1-3.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Configure WLAN Channel Information

Select a frequency band and channel to search for a WLAN waveform.

These are the valid WLAN frequency bands.

• 2.4 GHz
• 5 GHz

These are the valid WLAN channel numbers.

• 1–14 for the 2.4 GHz band
• 1–200 for the 5 GHz band. However, the valid 20 MHz control channels for access points using 5

GHz are 32, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
144, 149, 153, 157, 161, 165, 169, 173, and 177.

band = ;

channel = ;

Configure WLAN Preamble Detector

Load the WLAN preamble sequence and center frequency information. The preamble consists of one
long training symbol from a 20 MHz L-LTF waveform, sampled at 40 MHz. Normalize the preamble
sequence to be between -1 and 1.

load("TriggeredWLANData.mat");
preamble = preamble/sqrt(sum(abs(preamble).^2));

Create a preamble detector object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

clear pd
pd = preambleDetector(radio);

3 Spectrum Monitoring

3-14

Set the RF properties of the preamble detector.

pd.SampleRate = 40e6;
pd.CenterFrequency = getWLANCenterFrequency(WLANFrequenciesMap,band,channel);

To update the dropdown menu with the antennas available for your radio, call the
hCaptureAntennas helper function. Then select the antenna to use with this example.

antennaSelection = hCaptureAntennas(radio);

pd.Antennas = ;

Configure the filter coefficients for preamble detection.

pd.Preamble = preamble;

Set the threshold method to adaptive. To include the preamble sequence in the captured waveform,
set the trigger offset to a negative value.

pd.ThresholdMethod = "adaptive";

pd.TriggerOffset = ;

Configure Adaptive Threshold for Triggering

Set the adaptive threshold gain, adaptive threshold offset, and radio gain values of the preamble
detector for the local environment. Use the plotThreshold function to analyze the behavior of the
detector by plotting 120 ms of data. The function plots the correlator output, adaptive threshold, and
detection points. The correlator output contains two peaks for each OFDM packet. Each peak
corresponds to a long training symbol. Adjust the adaptive threshold gain, adaptive threshold offset,
and radio gain values such that the trigger points occur only on the correlator output peaks. For more
information on tuning these values, see “Triggered Capture Using Preamble Detection”.

pd.AdaptiveThresholdGain = ;

pd.AdaptiveThresholdOffset = ;

pd.RadioGain = ;
plotThreshold(pd,milliseconds(120));

 Triggered WLAN Waveform Capture Using Preamble Detection

3-15

Capture WLAN Signal

Use the capture function to capture data with the configured preamble detector. Because WLAN
beacons are transmitted every 100 ms, capture 100 ms of data with a 200 ms timeout.

recordLen = ;

timeout = ;
[data, timestamp, ~, status] = capture(pd,recordLen,timeout);

If detection is successful, plot the first 500 samples.

if ~status
 disp("Detection failed.")
else
 disp(" WLAN signal detected at " + string(timestamp) + ".");
 figure();
 subplot(2,1,1); plot(real(double(data(1:500)))); ...
 xlabel("Samples"); ylabel("Amplitude");
 subplot(2,1,2); plot(imag(double(data(1:500)))); ...
 xlabel("Samples"); ylabel("Amplitude");
end

 WLAN signal detected at 07-Jun-2022 16:59:18.

3 Spectrum Monitoring

3-16

Local Functions

function frequency = getWLANCenterFrequency(WLANFrequenciesMap,band,channel)
% Look up center frequency according to band and channel
channelSelectKey = band + "GHz:" + channel;
frequency = WLANFrequenciesMap(channelSelectKey);
end

See Also
Functions
radioConfigurations

Objects
preambleDetector

More About
• “Triggered Capture Using Preamble Detection”
• “OFDM WiFi Scanner Using SDR Preamble Detection” on page 3-2
• “Supported Radio Devices”

 Triggered WLAN Waveform Capture Using Preamble Detection

3-17

Simulate Triggered Capture Using Preamble Detection

This example shows how to simulate triggered data capture without a connected radio using a
Simulink® model. The model simulates a radio that is configured as a preamble detector. The
preamble detection parameters of the model are the same as the corresponding properties of the
preambleDetector object. Use this model to explore the behavior of custom preambles and test
waveforms before using the preambleDetector object to detect and capture live signals.

Introduction

This model simulates a radio that is configured as a preamble detector.

Open the model.

The mask parameters of the Preamble Detector subsystem enable you to configure the preamble
detector and the input test waveform inside the dataStreamer subsystem. The WLAN simulation
setup configures the model to simulate the detection of a WLAN test waveform. In the custom
simulation setup, you can configure your own test waveform and preamble detector parameters. For
more information on how to set the mask parameters, see the corresponding properties of the
preambleDetector object.

3 Spectrum Monitoring

3-18

This diagram shows how the Preamble Detector subsystem models preamble detection.

 Simulate Triggered Capture Using Preamble Detection

3-19

• The Programmable FIR filter correlates the input signal with the preamble sequence.
• The Threshold calculation component provides the threshold for the trigger point generation.
• The Comparator component generates the trigger point, which is the first data sample for which

the correlator output power is greater than the threshold.
• The Data packaging component starts the data capture at the trigger offset relative to the trigger

point.

Run WLAN Simulation Setup

Under Simulation setup, select WLAN 20MHz. This selection models the detection and capture of a
WLAN waveform that is configured with a 160 sample legacy long training field (L-LTF). The sample
rate is 20 MHz. The preamble consists of the first long training symbol from the L-LTF, which is 64
samples.

3 Spectrum Monitoring

3-20

Simulate the model for 0.17e-3 seconds, then click Show Results to open the Simulink Data
Inspector. To see the result of the detection, select the Output, Correlator Output Power, and
Threshold signals. The trigger point for detection is the first data sample for which the Correlator
Output Power value is greater than the Threshold value. The Output signal from the Preamble
Detector subsystem contains samples from the test waveform. The Trigger Offset parameter specifies
the first data sample in the Output signal relative to the trigger point. The Output Valid signal
defines which samples in the Output signal are valid. The Output Last signal is an AXI-S signal that
is not relevant in the detection analysis of this example.

 Simulate Triggered Capture Using Preamble Detection

3-21

Run Custom Simulation Setup

Under Simulation Setup , select Custom . This selection enables you to configure the model to
simulate the detection and capture of a custom waveform. To configure the model:

• Create the preamble variable in the workspace as a numeric vector with values in the range [-1,
1).

• Create the inputSignal variable in the workspace as a numeric vector of type double with
values in the range [-1, 1).

• Set the Preamble Detector subsystem parameters.
• Set the simulation stop time.

To illustrate this workflow, run the hGenerateZadoffChuPreambleWaveform script to generate the
preamble and inputSignal variables.

>> hGenerateZadoffChuPreambleWaveform

3 Spectrum Monitoring

3-22

Configure the Preamble Detector subsystem using the values in this figure.

 Simulate Triggered Capture Using Preamble Detection

3-23

To enable the model to fully process the input waveform, use this formula to calculate the minimum
simulation stop time.

• is the length of the preamble variable.
• is the length of the inputSignal variable.
• is .
• is the sample rate parameter defined on the Preamble Detector subsystem.

For this example, the minimum stop time is (1580 + 3*(338 + 137) + 280)/20e6 = 1.6425e-04
seconds. To enable some overhead for viewing the output signals, set the stop time to 2e-4 seconds.

Run the simulation and view the output.

3 Spectrum Monitoring

3-24

See Also
Objects
preambleDetector

More About
• “Triggered Capture Using Preamble Detection”
• “Connect and Set Up NI USRP Radios” on page 1-3
• “Supported Radio Devices”

 Simulate Triggered Capture Using Preamble Detection

3-25

	Radio Management
	Install Support Package for NI USRP Radios
	Connect and Set Up NI USRP Radios
	Start Radio Setup Wizard

	Reference Information for NI USRP Radio Setup Wizard
	SD Card Image Creation
	Radio Device Connection
	Network Configuration
	Data Transfer Optimization

	Baseband Sample Rate in NI USRP Radios
	Supported Master Clock Rates
	Set Baseband Sample Rate
	Farrow Rate Converter
	Resampling Transmit Waveform

	Transmit and Capture
	Capture from Frequency Band with Multiple Antennas
	Transmit App-Generated Wireless Waveform Using Radio Transmitters

	Spectrum Monitoring
	OFDM WiFi Scanner Using SDR Preamble Detection
	Triggered WLAN Waveform Capture Using Preamble Detection
	Simulate Triggered Capture Using Preamble Detection

